ВЕЩЕСТВ И ПРИНЦИПЫ ИХ НОРМИРОВАНИЯ В КОРМАХ

И ПРОДУКТАХ ЖИВОТНОВОДСТВА

Для предотвращения отравления сельскохозяйственных и ди­ких животных, в том числе рыб, птиц, пчел, токсическими веще­ствами, применяемыми для обработки растений, почвы, водоемов и животных, а также с целью профилактики загрязнения продук­тов питания животного происхождения их остатками устанавливани pel плмопты их безопасного использования и максимально до-iivi'iiiMi.if у|ювни (МДУ) содержания в кормах и продуктах пита­нии

МДУ и кормах — предельно допустимое количество химичес­ком» iичпостна в кормах для сельскохозяйственных животных, вы-рнжсимое и мг/кг массы корма, при котором вещество не оказыва­ем три нагельного влияния на организм и не может содержаться в продуктах питания, полученных от животного, в количествах шише признанных допустимыми.

МДУ, выраженный в мг/кг массы корма, соответствует поня-i то р.р.щ — parts per million (частей на миллион), принятому за

р\>(Н'ЖОМ.

МДУ в продуктах питания — максимально допустимый уровень i одержания биологически активного вещества в растительных и «минутных продуктах, выраженный в тех же единицах, что и вели­чина в кормах.

Допустимые уровни содержания токсических веществ в питье-iioii воде, воде рыбохозяйственных водоемов, а также в воздухе ра­бочей зоны определяются показателями ПДК, выраженными в mi/л для воды и в мг/м3 для воздуха. Расшифровывают эти показа-кмш как предельно допустимые концентрации токсических ве­ществ в объектах исследования.

МДУ химических веществ для продуктов питания устанавлива­ют органы здравоохранения на основании комплекса показателей:

исследований хронической токсичности химического соедине­ния в 10—12-месячных опытах не менее чем на двух видах лабора­торных животных, из которых один не является грызуном;

кумулятивных свойств химического соединения;

персистентности вещества во внешней среде;

способности выделяться с молоком и оказывать отрицательное действие на потомство, а также других показателей.

На основании исследования хронической токсичности для животных устанавливают минимальную действующую дозу (мин. ДД) или максимальную недействующую (безвредную) дозу (макс. НД) для животных. Затем с помощью коэффициента запа­са, который колеблется в пределах от 30 до 100 в зависимости от свойств химического соединения, выводят мин. ДД для человека. Для этого величину мин. ДД для животных делят на коэффициент запаса. Например, величина мин. ДД токсического вещества, ус­тановленная экспериментально, составила 5 мг/кг массы живот­ного. Коэффициент запаса для данного соединения равен 50. Тог­да величина мин.ДД этого вещества для человека составит 5 : 50 = 0,1 мг/кг массы. На основании полученного показателя рассчитывают суточную безопасную дозу. Для этого величину мин. ДД (в данном случае 0,1 мг/кг) умножают на среднюю массу человека, которую принято считать равной 50 кг (с учетом массы детей). Таким образом, суточная безопасная доза химического ве щества в нашем примере составит 0,1 мг/кг • 50 кг = 5 мг. На осно­вании этого показателя вычисляют величину МДУ токсического вещества для продуктов питания различных видов.



Несколько иначе устанавливают величину толерантности (МДУ) токсических веществ в продуктах питания за рубежом. В основу расчетов также положены хронические опыты на лабора­торных животных. Исследуемое вещество не менее чем в 3 дозах дают с кормом в течение 3 мес или даже 2 лет. На основании ис­следований устанавливают максимально недействующую, или подпороговую, дозу, выраженную в мг/кг корма, а не в мг/кг жи­вой массы животного, как это принято в нашей стране. Этот пока­затель переводят с помощью коэффициента пересчета в мг/кг мас­сы животного. Для белых крыс коэффициент пересчета равен 12,5. Допустим, что в хронических опытах на белых крысах максималь­но недействующая доза установлена равной 10 мг/кг корма. В пе­ресчете на массу животного эта величина будет равна 0,8 мг/кг (10 : 12,5). По этой величине определяют безопасный уровень со­держания токсического вещества для определенного продукта пи­тания, входящего в состав рациона человека — Pd.

Этот показатель вычисляют по формуле

Pd =

Х50 Sa '

где X— максимально недействующая доза (подпороговая) для животных, выра­женная в мг/кг массы; 50 —средняя масса человека, кг; S— фактор безопаснос­ти, который обычно принимают равным 100. Эту цифру выводят из следующих соображений. Максимально возможные колебания чувствительности отдельных индивидуумов в пределах одного вида не превышают величины, равной 10. В этих же пределах колеблется чувствительность различных видов животных в пределах одного класса. Произведение этих двух величин составляет фактор безопасности. При определении величины Pd для фосфорорганических инсектицидов фактор безопасности иногда берут равным 20, если основным токсикологическим тестом, по которому определяют физиологическое действие токсического вещества, явля­ются начальные признаки угнетения холинэстеразы крови; г— масса продукта, входящего в дневной рацион человека.



Сумма величин Pd— безопасного ежедневного уровня по­ступления токсических веществ с каждым отдельным пищевым продуктом, входящим в состав дневного рациона, составляет ве­личину ADI — acceptle daily intake — безопасный уровень поступ­ления токсического вещества в организм человека в день.

Величины МДУ, или толерантности, токсических веществ в продуктах питания являются официальными, установленными органами здравоохранения на основании величин мин. ДД токси­ческих веществ, фактического уровня содержания остатков в гото­вых продуктах питания и других показателей.

МДУ токсических веществ в кормах для сельскохозяйственных

ж 11 потных устанавливает ветеринарная служба на основании экс­периментов на животных тех видов, для которых выводят этот по-к;патель. Для экспериментального обоснования МДУ должны |)мть проведены исследования острой токсичности ядохимиката для лабораторных и сельскохозяйственных животных, разработан метод определения его остатков в органах и тканях животных, мо­локе, мясе, яйцах, кормах, изучены хроническая токсичность ве­щества, степень его материальной кумуляции при длительном по­ступлении с кормом, выделении с молоком и яйцами.

По результатам экспериментов определяют максимально не­токсическую (подпороговую) (макс. НД) и минимально токсичес­кую (пороговую) дозу (мин. ДД), а также коэффициент матери­альной кумуляции по отношению к животным того вида, для ко­торого нормируются остатки. На основании показателей макс. НД и коэффициента материальной кумуляции можно рассчитать ве­личину МДУтоксического вещества в кормах для сельскохозяй­ственных животных данного вида.

Если при введении с кормом исследуемого вещества в течение 3 мес в дозах, соответствующих макс. НД, официальным методом анализа не удается обнаружить его остатки в органах и тканях жи­вотных, молоке, яйцах в количествах выше тех, которые приняты органами здравоохранения в качестве допустимых, величину МДУ данного химического вещества в кормах для дойного и откормоч­ного скота можно принять равной 1/2 макс. НД. Например, в опытах с карбофосом установлена макс. НД 100 мг/кг корма. При введении пестицида коровам в этой дозе официальным методом не установлено его выделение с молоком и накопление в мышеч­ной ткани. Экспериментально обоснованную величину МДУ кар­бофоса в кормах для откормочного и молочного скота можно при­нять равной 50 мг/кг корма.

В случае, если при введении с кормом токсического вещества обнаруживают его остатки в органах и тканях животного, молоке, яйцах, МДУ в кормах целесообразно определять, исходя из степе­ни материальной кумуляции вещества в тканях, выделения с мо­локом и яйцами. Например, при длительном поступлении с кор­мом гамма-изомера ГХЦГего обнаруживают в мышцах крупного рогатого скота и овец в количествах, в 25 раз меньших по сравне­нию с его содержанием в корме. Коэффициент материальной ку­муляции мышцы — корм в этом случае составляет 0,04. Органами здравоохранения МДУ гамма-иззомера в мясе установлен равным 0,005 мг/кг.

Для нашего примера ПДК гамма-изомера ГХЦГ для откормоч­ного скота равна

^^=0,125 мг/кг корма.

Выделение ГХЦГ с молоком составляет около 10% от уровня его содержания в корме в пересчете на жидкое молоко. Коэффи­циент выделения корм — молоко равен 0,1- ПДК гамма-изомера ГХЦГ в корме для молочного скота можно вычислить по той же формуле

„„., МДУмолока 0,005 А Л. .

ПДКкорма=——------------------ =—--- =0,05мг/кг.

Л выдел. 0,1

Аналогичные расчеты можно произвести и для яиц. Коэффи­циент выделения гамма-изомера ГХЦГ с желтком при поступле­нии с кормом достигает 1. Поэтому ПДК гамма-изомера ГХЦГ в кормах для яйценоской птицы следует рекомендовать равной 0,005 мг/кг — величине МДУ гамма-изомера для яиц.

Таким образом, исходным показателем, по которому устанав­ливают ПДК токсических веществ в кормах для сельскохозяй­ственных животных, является их МДУ в мясе, молоке и яйцах.

ПДК токсических веществ в воздухе рабочей зоны и в питьевой воде устанавливают органы здравоохранения на основании комп­лекса токсикологических исследований, в воде рыбохозяйствен-ных водоемов — соответствующие органы Минрыбпрома и Мин-сельхоза России. Однако до настоящего времени нет единых мето­дических подходов к нормированию токсических веществ в воде рыбохозяйственных водоемов.

Ряд авторов (Н. И. Лесликов, 1960, и др.) предлагают в качестве тест-организмов при экспериментальном обосновании ПДК ток­сических веществ в воде рыбохозяйственных водоемов использо­вать дафнии и другие низшие гидробионты, которые служат пи­щей для рыбы. Такой выбор едва ли будет удачным. ПДК токси­ческих веществ устанавливают для рыбы, поэтому правильным было бы и в качестве тест-объекта использовать рыбу.

Схемой проведения опытов должно быть предусмотрено, так же как и в опытах на теплокровных животных, определение в ост­рых и хронических опытах максимально недействующей (неток­сичной), минимально токсичной (пороговой) и смертельной кон­центраций, а также СК5о при 96-часовом контакте токсического вещества с рыбой. Базисной концентрацией, по которой устанав­ливают ПДК, целесообразно принять максимально недействую­щую концентрацию. При этом обязательно должны быть предус­мотрены исследования по разработке методики определения ток­сического вещества в воде, планктоне, рыбе, изучена динамика i-1'о остатков в воде и рыбе и установлены пути попадания токси­канта в рыбохозяйственный водоем.

ПДК токсических веществ в воде рыбохозяиственных водоемов не может служить критерием оценки санитарного состояния водо­ема, как это имеет место с ПДК или МДУ токсикантов в кормах или продуктах питания. Следовательно, ПДК химических веществ и воде рыбохозяиственных водоемов является лишь исходным по­казателем, на основании которого могут быть установлены регла­менты применения пестицидов и других веществ в зоне водоемов или проведен контроль за работой очистных сооружений про­мышленных предприятий, сбрасывающих сточные воды в реки или моря. Поэтому ПДК в воде рыбохозяиственных водоемов не может быть меньше чувствительности аналитического метода оп­ределения остатков этого вещества в воде.

По показателю ПДК или МДУ химических веществ в кормах и продуктах питания и скорости снижения их остатков в почве, рас­тениях или организме животных устанавливают регламенты (огра­ничения) по применению веществ на растениях или животных. Ос­новным регламентом на растениях служит «время ожидания» — срок (в днях) от момента последней обработки участков (кормовых культур, лугов, пастбищ) до уборки урожая на корм животным или их выгона на обработанное пастбище. Это время соответствует про­должительности исчезновения остатков пестицида до уровня, рав­ного ПДК, установленной для кормов, в днях с момента последней обработки. Например, ПДК пестицида X в кормах для сельскохо­зяйственных животных установлена равной 2 мг/кг. Исчезновение остатков этого пестицида на люцерне до 2 мг/кг происходит в тече­ние 25 дней со дня обработки. Следовательно, «время ожидания» пестицида X на люцерне должно составлять 25 дней.

Для химических средств защиты животных устанавливают «сроки убоя», величина которых соответствует времени (в днях) снижения остатков в органотропном органе животного до МДУ химического вещества, установленного органами здравоохране­ния для мяса.

Особенно жесткие регламенты должны быть установлены в случаях применении пестицидов, антигельминтиков и других ве­теринарных препаратов для дойного крупного рогатого скота и яйценоских птиц. В молоке и яйцах, как правило, не допускается или допускается на очень низком уровне содержание остатков токсических веществ. Поэтому для обработки дойных животных и яйценоской птицы следует применять такие препараты, которые очень быстро разрушаются в организме и не выделяются с моло­ком и яйцами. Если такой возможности нет, преимущество следу­ет отдавать таким препаратам и методам применения, при исполь­зовании которых отмечается наиболее низкое выделение. Однако и для использования этих препаратов должны быть установлены жесткие регламенты.

1.5. МЕТОДЫ ОПРЕДЕЛЕНИЯ ТОКСИЧЕСКИХ ВЕЩЕСТВ

В ОБЪЕКТАХ ОКРУЖАЮЩЕЙ СРЕДЫ, ТКАНЯХ ЖИВОТНЫХ

И ПРОДУКТАХ ЖИВОТНОВОДСТВА

Химико-токсикологический анализ в ветеринарной токсиколо­гии имеет решающее значение. При установлении диагноза на от­равление, изучении миграции токсических веществ в объектах ок­ружающей среды и организме животных, проведении ветеринарно-санитарной оценки кормов и продуктов питания используют, как правило, только химико-аналитические методы исследования. Особенно их значение возросло за последние годы, когда стали уделять особое внимание охране окружающей среды, в системе которой большое место занимает мониторинг — накопление фак­тических данных по уровню загрязнения объектов окружающей среды токсическими веществами различного происхождения.

По данным Гунтера (1977), чувствительность аналитических методов определения пестицидов за 25 лет (1941 — 1965) выросла в десятки тысяч раз. Если в 1941 г. пределы обнаружения большин­ства токсических веществ составляли 10мг/кг, то в 1965 г.— 0,1 мкг/кг.

В настоящее время для анализа остатков химических веществ в объектах окружающей среды и биологическом материале исполь­зуют современные физико-химические методы, такие, как тонко­слойную и газожидкостную хроматографию, ультрафиолетовую, инфракрасную и атомно-абсорбционную спектрометрию, масс-спектрометрию и хромас-спектрометрию.

Современные методы исследования должны быть по возмож­ности специфичными, т. е. позволяли бы открывать искомое ве­щество в присутствии других аналогичных соединений, быть дос­таточно чувствительными и позволяли бы определять миллион­ные доли вещества в 1 кг субстрата. Особенно это важно для мето­дов, предназначенных для санитарной оценки кормов и продуктов животноводства, а также для изучения динамики остатков пести­цидов в воде, растениях и организме животных.

Степень определения химических токсикантов должна состав­лять не менее 60 % от количества стандартного вещества, внесен­ного в пробу. Методы должны быть удовлетворительно точными (не менее ± 20 %) и хорошо воспроизводимыми.

Методы определения токсических веществ в патологическом материале, объектах окружающей среды, кормах и продуктах пи­тания животного происхождения включают в себя выделение ток­сического вещества из пробы. Выделение яда из пробы может быть проведено путем мокрого или сухого озоления, отгонки с во­дяным паром или же экстракцией одним или несколькими орга­ническими растворителями.

Сухое озоление проводят под действием высокой температуры (до 500 °С) в муфельной печи. Этот метод в основном используют для выделения металлов.

Мокрое озоление применяют значительно чаще и проводят при помощи концентрированных неорганических кислот, чаще всего смеси азотной, серной кислот и окислителей.

Выделение токсических веществ методом отгонки с водяным паром или дистилляции используют для легколетучих химичес­ких соединений. Сущность метода заключается в том, что пробу тщательно измельчают до кашицеобразного состояния или же разрушают неорганической кислотой, разбавляют водой, а за­тем воду перегоняют, нагревая колбу или подавая в нее пар от парообразователя. Токсические вещества переводятся в дистил­лят.

Чаще других в ветеринарной практике выделяют токсические вещества путем их экстракции из пробы органическими раствори­телями. Для этого пробу тщательно измельчают, помещают в кол­бу, а затем заливают одним или несколькими органическими ра­створителями. Объем органического растворителя должен быть не менее чем в 2 раза больше массы или объема пробы. Экстракцию токсиканта проводят путем выдерживания пробы с органическим растворителем в течение 20—24 ч, перемешивания на шюттель-ап-парате в течение 1—2 ч или смешивания в течение нескольких ми-пут при большой скорости вращения перемешивающего устрой­ства (ультратораксы, омнимиксары и др.). Последний способ предпочтителен, так как при этом образуется гомогенная масса, в которой создается наиболее тесный контакт органического ра­створителя с субстратом, а следовательно, наиболее полно извле­каются токсические вещества, содержащиеся в пробе. Для этой цели также используют аппарат Соксклета, в котором токсическое вещество экстрагируется при многократном промывании субстра­та кипящим органическим растворителем. Аппарат Соксклета обеспечивает более полное извлечение токсиканта из пробы по сравнению с другими методами.

При любом способе выделения токсического вещества в экст­ракт переходит значительное количество примесей, мешающих определению: жиры, пигменты, воск, белки, соли и др. Для осво­бождения экстракта от этих веществ используют различные спо­собы очистки: путем омыления, вымораживания, осаждения, пе­рераспределения из одного органического растворителя в другой с помощью специальных колонок и др. Последние зависят от вида анализируемого соединения и субстрата, в котором он нахо­дится.

Для того чтобы повысить чувствительность метода анализа, эк­стракты концентрируют до небольшого объема, достаточного для проведения исследований данным методом. Обычно конечные объемы экстрактов составляют 0,5—5 мл. Для концентрирования используют специальные аппараты Кудерна—Данича, вакуум-ротационные испарители. Концентрирование также можно прово­дить в токе воздуха или азота. В практических условиях наиболее приемлемым способом является концентрирование в токе воздуха. Для этого экстракт заливают в фарфоровую выпарительную чаш­ку, ставят ее под шторку вытяжного шкафа и включают тягу. При определении высоколетучих веществ при концентрировании воз­можны значительные потери яда, поэтому при этой операции не­обходимо выполнять следующие требования: не концентрировать конечные экстракты при повышенной (выше 40 °С) температуре, не упаривать досуха очищенные экстракты.

Индикацию токсичных веществ проводят следующими основ­ными методами.

Биологические методы.Применяют главным образом для опре­деления некоторых пестицидов и микотоксинов. Они основаны на чувствительности низших животных, растений или тканей к действию токсического вещества. Так, к инсектицидам и акарици-дам наиболее чувствительны различные членистоногие. Чаще дру­гих для определения ансектоакарицидов используют комнатных мух, мух-дрозофил, личинок комаров и рачков-дафний. Для опре­деления микотоксинов применяют кожные пробы на кроликах или аквариумных рыбах гуппи.

Некоторые из микотоксинов, в частности трихотецены и дру­гие, продуцируемые грибом Fusarium sporotrihioides, обладают очень сильным дерматоцидным действием, поэтому реакция кожи является специфической по отношению к метаболитам этих видов грибов. Из всех позвоночных животных наиболее чувствительны по отношению к большинству токсических веществ рыбы, поэто­му их используют для определения не только микотоксинов, но и многих других токсикантов.

Биологические методы индикации обладают высокой чувстви­тельностью, однако в большинстве своем они неспецифичны и не позволяют установить вид токсического вещества. Однако эти ме­тоды широко применяют для общей токсикологической оценки кормов при отравлениях животных на первой стадии лаборатор­ного токсикологического исследования. С помощью этих методов можно установить отравление и исключить заболевания другой этиологии.

Биохимические методы.Основаны на подавлении некоторыми токсическими веществами активности отдельных биохимических систем. В ветеринарном токсикологическом анализе наиболее ча­сто применяют ферментный метод определения фосфороргани-ческих и карбаматных инсектицидов. Он основан на том, что со­единения этих групп в условиях in vitro подавляют активность холинэстеразы. Чувствительность метода при определении некото­рых ФОС достигает 0,01—0,001 мг/кг. Однако эти методы обладают групповой специфичностью и позволяют установить всю группу в целом, не давая возможности установить вид ФОС.

Кроме этого некоторые ФОС, в частности производные тио- и дитиофосфорных кислот, очень слабо ингибируют активность фер­мента in vitro и нуждаются в предварительной активации.

Химические методы.Основаны на количественном определении осадка или окрашенного комплекса, образуемого при взаимодей­ствии открываемого вещества с другим химическим соединением. Химические методы анализа, применяемые в ветеринарной ток­сикологической практике, основаны на осаждении, титрометрии, колориметрии, спектрофотометрии.

Реакция осаждения базируется на образовании нерастворимого в воде осадка при взаимодействии открываемого химического ве­щества с другим химическими соединением, вводимым в экст­ракт. По реакции осаждения определяют некоторые алкалоиды, натрия хлорид, ТМТД и другие токсические вещества. Однако ме­тоды определения ядовитых веществ этой реакцией имеют низкую чувствительность, недостаточную специфичность и точность, по­этому их применяют ограниченно.

Более широко используют титрометрические методы. При­мером может служить определение натрия хлорида при осажде­нии хлоридов серебра нитратом с последующим титрованием избытка серебра роданидом аммония в присутствии в качестве индикатора железоаммонийных квасцов. Но и титрометричес­кие методы недостаточно чувствительны и утрачивают свое практическое значение в связи с развитием новых, более совер­шенных способов.

В практике химико-токсикологических исследований находят широкое применение колориметрические методы, основанные на определении интенсивности окраски цветных комплексов, обра­зующихся при взаимодействии открываемого вещества с другим химическим соединением, вводимым в раствор. В последние годы все чаще используют фотоэлектроколориметрические методы, при которых интенсивность окрашивания цветных комплексов определяют с помощью фотоэлектроколориметра. По чувстви­тельности и точности колориметрические методы превосходят ос­нованные на осаждении и титрометрии способы.

Физико-химические методы. Кфизико-химическим методам от­носят различные методы хроматографии (колоночную, бумажную, тонкослойную, газожидкостную и жидкостную), полярографию, ультрафиолетовую и инфракрасную спектрометрию, атомную аб­сорбцию, методы нейтронно-активационного анализа.

Из хроматографических методов в практике ветеринарно-ток-сикологического исследования наибольшее применение находят тонкослойная и газожидкостная хроматографии (ТСХ и ГЖХ), разработанные русским ученым М. С. Цветом (1903). Эти методы являются одними из основных в аналитической химии. Преиму­щество их состоит в том, что они обладают высокой специфично­стью и чувствительностью и позволяют за один аналитический iipiii-м определить сразу несколько химических соединений. Мож­но спожпую смесь химических соединений, содержащихся в ана-пи шруемой пробе, разделить на отдельные вещества, а затем каж­дое hi них определить каким-либо химическим или физическим методом.

Тонкослойную хроматографию наиболее широко применяют в практических лабораториях. Принцип полуколичественного ме­тода состоит в том, что смесь химических веществ, содержащихся в анализируемой пробе, наносят на пластинку и разделяют в тон­ком слое инертного порошка (селикагель, окись алюминия и др.) с помощью смеси органических растворителей (подвижный ра­створитель). Пластинку опрыскивают раствором проявляющего реактива, в результате чего на ней появляются в виде окрашенных пятен исследуемые химические соединения. Идентифицируют от­крытые вещества по величине Rf — частному от деления расстоя­ния, пройденного искомым веществом отточки нанесения (линия старта) до места дислокации, к расстоянию, пройденному под­вижным растворителем. Количество открываемого вещества опре­деляют по интенсивности окраски пятна и его размерам.

В практике ветеринарных химико-токсикологических исследо­ваний тонкослойная хромотография используется для определе­ния многих пестицидов, алкалоидов, микотоксинов, органичес­ких соединений тяжелых металлов. Метод прост по технике ис­пользования, не требует сложного оборудования, обладает доста­точно высокой специфичностью и чувствительностью (0,05— 1,0 мкг в пробе).

Газовую хроматографию применяют для одновременного разде­ления смеси химических веществ, их последующей идентифика­ции и количественного определения. Разделение смеси осуществ­ляют на стеклянных или металлических колонках длиной 1—3 м, заполненных твердым адсорбентом с нанесенной на него жидкой фазой. В качестве последней чаще всего используют высокомоле­кулярные жидкости с высокой температурой кипения (полиэти-ленгликоли, силиконовые масла и др.). Подвижной фазой служит инертный газ (азот и др.).

Индикацию разделенных химических веществ осуществляют с помощью детектора. В газовых хроматографах, предназначенных для анализа токсических веществ, чаще всего используют детектор электронного захвата (ДЭЗ), термоионный детектор (ТИД), пла­менно-фотометрический детектор (ПФД). Абсолютная чувстви­тельность детектирования различных химических соединений до­стигает 0,01—0,02 нг в пробе, относительная чувствительность — 0,1—0,5 мкг/кг. В практике химико-токсикологического анализа газовую хроматографию применяют для открытия многих пести­цидов, органических соединений ртути, полихлорированных би-фенилов и других токсических соединений. Однако возможности газовой хроматографии далеко не исчерпаны. Газовая хроматография, и в частности ГЖХ, имеет некоторые недостатки: не позво­ляет прямым способом разделить и идентифицировать вещества, не обладающие летучестью и не способные прямым путем перехо­дить в газообразное состояние.

Высокоэффективная жидкостная хроматография (ВЭЖХ) осно­вана на том же принципе, что и газожидкостная, с той лишь раз­ницей, что разделение вещества происходит в двух несмешивающихся жидкостях. Одна из них — обычно высокомолекулярная не­полярная жидкость —служит неподвижной фазой, вторая — низ­комолекулярная — подвижной. Подвижную фазу под высоким давлением пропускают через неподвижную, в результате чего сложная смесь разделяется на отдельные соединения. С помощью ВЭЖХ можно разделить твердые и жидкие смеси, не превращая их в газообразное состояние, как это бывает при ГЖХ.

Недостаток этого метода — ограниченное число детектирую­щих систем. Серийные жидкостные хроматографы, выпускаемые отечественными фирмами, оборудованы лишь одним детекто­ром — спектрофотометром.

Спектральные методы. Наибольшее применение в практике анализа токсических веществ получила ультрафиолетовая спект­рометрия. Принцип работы ультрафиолетового спектрофотометра основан на поглощении растворами химических веществ лучей в ультрафиолетовом спектре. Этот метод принципиально отличает­ся от фотоэлектроколориметрического тем, что оптическая плот­ность анализируемых экстрактов измеряется в ультрафиолетовой области спектра.

Инфракрасная спектрометрия основана на поглощении хими­ческим веществом лучей в инфракрасной области спектра. Сте­пень поглощения неодинакова у разных структурных групп хими­ческого вещества, поэтому инфракрасная спектрограмма пред­ставляет собой конгломерат пиков с большим количеством вер­шин. Инфракрасную спектрометрию, как правило, не используют для определения микроколичеств химических веществ в биологи­ческих субстратах, а применяют главным образом для расшифров­ки структуры выделенного химического вещества.

Атомно-абсорбционная спектрометрия основана на поглощении отдельными атомами химических элементов световых лучей в оп­ределенной области спектра. Поэтому исследуемые химические вещества вначале минерализуются, а затем в состоянии раствора подвергаются воздействию лучами определенной длины, соответ­ствующей поглощающей способности того или иного элемента. По степени поглощения лучей определяют его количественное со­держание. Этот метод находит широкое применение главным об­разом при определении металлов и металлоидов (ртуть, свинец, кадмий, медь, цинк и др.).

Нейтронно-активационный анализ основан на облучении пробы нейтронами, в результате чего возникает наведенная радиация, по степени которой и определяют количественный уровень содержа­ния исследуемого элемента. Однако метод требует сложного обо­рудования, поэтому малоприемлем в практических условиях.

Критерии оценки методов определения остатков токсических ве­ществ.Методы определения остатков токсических веществ в объектах ветеринарного надзора обычно характеризуют по чув­ствительности, точности и определяемости.

Чувствительность метода — наименьшее количе­ство химического вещества, открываемое при заданных условиях метода. Она может быть абсолютной и относительной. Абсолют­ная чувствительность — наименьшее количество вещества, кото­рое можно определить данным методом или реакцией, лежащей в ее основе. Так, с помощью газожидкостной хроматографии можно определить 0,05 нг ТХМ-3. Однако для исследования используют лишь часть аликвоты, предназначенной для анализа, которая со­ответствует определенной части пробы. Поэтому для полной ха­рактеристики метода целесообразно ввести такое понятие, как от­носительная чувствительность — чувствительность по отношению к одному и тому же объему или массе. Обычно относительную чувствительность принято выражать в мг/кг пробы.

Точность метода. Под точностью метода, как правило, понимают различие между истинной и экспериментально найден­ной величиной. При этом за истинную величину может быть при­нято количество вещества, вносимого в пробу из стандартного ра­створа. Поэтому точность метода может быть охарактеризована как разница между количеством вещества, внесенного в пробу и определенного данным методом аналитического исследования. Точность — это величина стандартного относительного отклоне­ния, установленного по результатам воспроизведения методики при'внесении данного количества вещества в пробу.

Точность метода соответствует величине стандартного относи­тельного отклонения и вычисляется по формуле


_ \ЦХ-Х)2
N-1

а (стандартное отклонение)=


где N— число измерений; X— примерная величина; X —среднее арифметичес­кое; I — знак суммирования.

Сначала рассчитывают среднее арифметическое X, затем абсо­лютную величину разности между X и значением отдельного из­мерения; разность возводят в квадрат и эту величину суммируют. Сумму делят на N— 1. Квадратный корень из полученного резуль­тата представляет собой стандартное отклонение а.

Однако точность метода может быть вычислена применительно к определяемости. Поэтому сначала устанавливают определяемость метода, а затем его точность по показателю относительного стандартного отклонения.

Определяе мость метода — средняя величина, пока­зывающая процент открытия вещества в пробе после его внесения из стандартного раствора в количествах, соответствующих пределу определения и максимально возможному уровню содержания.

1.6. ЭМБРИОТОКСИЧЕСКОЕ, ГОНАДОТОКСИЧЕСКОЕ,

ТЕРАТОГЕННОЕ И МУТАГЕННОЕ ДЕЙСТВИЕ

ТОКСИЧЕСКИХ ВЕЩЕСТВ

Отдельные токсические вещества при поступлении в организм животных вместе с кормом или в результате обработок могут от­рицательно влиять на репродуктивную функцию животных, вызы­вая эмбриотоксическое, тератогенное, гонадотоксическое дей­ствие. По этой причине токсические вещества, которые могут по­ступать в организм животных с кормом постоянно или в течение определенного периода, должны подвергаться исследованию на эмбриотоксичность, тератогенность и гонадотоксичность. Также целесообразно исследовать на наличие этих действий некоторые лекарственные препараты и премиксы, если их используют мно­гократно.

Эмбриотоксическое действие. Это способность исследуемого ве­щества отрицательно действовать на развивающиеся эмбрионы. В медицинской токсикологии эмбриотоксическое действие изучают на самках белых крыс, которым в течение всей беременности вво­дят внутрь через зонд или дают с кормом препарат. На 17—19-й день беременности, начало которой устанавливают по результатам исследования вагинальных мазков, крыс убивают, подсчитывают число плодовместилищ, желтых тел в яичниках, живых и мертвых плодов. Сравнивая результаты этих исследований в опытной и контрольной группах, устанавливают степень эмбриотоксической активности препарата. Часть беременных крыс из опытных групп оставляют для родов, при этом учитывают продолжительность бе­ременности, число плодов, их массу, длину туловища новорож­денных крысят, их развитие (увеличение длины и массы за опре­деленный срок, время открытия глаз, покрытия шерстью, начала самостоятельного передвижения по клетке и поедания корма). Кроме того, учитывают выживаемость крысят, распределение их по полу. При этом отмечают: избирательную эмбриотоксич­ность — эффект проявляется в дозах, не токсичных для материнс­кого организма; общую эмбриотоксичность — проявляется одно­временно с развитием интоксикации организма матери; отсут­ствие эмбриотоксичности — эффект не отмечается при признаках интоксикации материнского организма (Медведь, 1968).

Каких-либо методических подходов к определению эмбриотоксических свойств препаратов ветеринарного назначения нет.

I la первых этапах, по-видимому, целесообразно в качестве модели использовать также белых крыс, так как опыты на сельскохозяй­ственных животных затруднительны из-за продолжительных сро­ков беременности и сравнительно небольшого числа особей в по­мете (за исключением свиней). В том случае, если будет установ­лено, что исследуемые соединения обладают общей или избира­тельной эмбриотоксичностью, ставят опыты на животных, и прежде всего на свиньях. Препараты в зависимости от их целевого назначения и способа применения целесообразно давать с кор­мом, вводить внутримышечно или наносить накожно.

Тератогенное действие.Это такое действие, при котором нару­шается формирование плода в период его эмбрионального разви­тия. Проявляется оно в виде уродств. Тератология как наука полу­чила развитие после случаев с талидомидом — лекарственным препаратом, широко применявшимся беременными женщинами в Западной Европе в качестве снотворного и седативного средства. В результате было зафиксировано рождение детей с врожденными пороками развития.

В медицинской токсикологии тератогенное действие пестици­дов определяют на белых крысах. Для этого препарат животным вводят в<


vhodit-gaev-v-pravoj-ruke-u-nego-pokupki-levoj-on-utiraet-slezi.html
vhodite-tesnimi-vratami-713-14.html
    PR.RU™